
CIS 4004: PHP – Part 2 Page 1 Dr. Mark Llewellyn ©

CIS 4004: Web-Based Information Technology

Spring 2011

Introduction to PHP – Part 2

Department of Electrical Engineering and Computer Science

University of Central Florida

Instructor : Dr. Mark Llewellyn

markl@cs.ucf.edu

HEC 236, 407-823-2790

http://www.cs.ucf.edu/courses/cis4004/spr2011

CIS 4004: PHP – Part 2 Page 2 Dr. Mark Llewellyn ©

Functions In PHP

• Functions are at the heart of a well-organized script and will

make your code easy to read and reuse.

• Large projects would be unmanageable without functions

because the problem of repetitive code would bog down the

development process.

• If you haven’t had any experience using functions, you can

think of a function as an input/output machine. The machine

takes the raw materials you feed it (the input) and works with

them to produce a product (the output).

• A function accepts values, processes them, and then performs

an action (printing to the browser, for example), returns a

new value, or both.

CIS 4004: PHP – Part 2 Page 3 Dr. Mark Llewellyn ©

Functions In PHP

• If you need to bake a cake, you would probably do it

yourself, in your own kitchen with your oven. But if you

need to bake thousands of cakes, you would probably build

or acquire a special cake-baking machine, built for making

cakes in massive quantities.

• Similarly, when deciding whether to create a function for

reuse, the most important factor to consider is the extent to

which it can save you from writing repetitive code.

• If the code you are writing will be used more than once, it is

probably best to create a function to represent the code.

CIS 4004: PHP – Part 2 Page 4 Dr. Mark Llewellyn ©

Functions In PHP

• A function is a self-contained block of code that can be

called by your script.

• When called (or invoked), the function’s code is executed

and performs a particular task. You can pass values to a

function (called arguments), which then uses the values

appropriately – storing them, transforming them, displaying

them, whatever the function is designed to do. When

finished, a function can also pass a value back to the original

code that called it into action.

• In PHP, functions come in two flavors – those built in to the

language, and those that you define yourself.

CIS 4004: PHP – Part 2 Page 5 Dr. Mark Llewellyn ©

Functions In PHP

• PHP has hundreds of built-in functions. Consider the

following example that utilizes the built-in function

strtoupper().

CIS 4004: PHP – Part 2 Page 6 Dr. Mark Llewellyn ©

Functions In PHP

• In the previous example, the function strtoupper() is

called and passed a variable whose value is represented by a

string. The function goes about its business of changing the

contents of the string to uppercase letters.

• A function call consists of the function name followed by

parentheses. (Note, even a function that has no parameters

requires a set of parentheses.) The information being passed

to the function (the arguments) are placed between the

parentheses.

• For functions that require more than one argument, the

arguments are separated by commas:

some_function ($an_argument, $another_argument);

CIS 4004: PHP – Part 2 Page 7 Dr. Mark Llewellyn ©

Functions In PHP

• The strtoupper()from the previous example is typical

for a function in that it returns a value. Most functions return

some information back after they’ve completed their task –

they usually at least tell whether their mission was successful.

• The strtoupper() function returns a string value so its

usage requires the presence of a variable to accept the returned

string, as was the case in the line:

$capitalized_string – strtoupper($original_string);

• Functions in PHP that return values use a return statement

within the body of the function. We’ll use this in a few more

pages when we start constructing our own functions.

CIS 4004: PHP – Part 2 Page 8 Dr. Mark Llewellyn ©

Defining Functions In PHP

• You can define your own functions in PHP using the

function statement:

function someFunction($argument1,. . .,argument2) {

//function code goes here

}

• The name of the function follows the function statement and

precedes a set of parentheses. If your function requires

arguments, you must place the comma-separated variable

names within the parentheses. These variables will be filled

by the values passed to your function when it is called.

• Even if your function does not require arguments you must

still supply the parentheses.

CIS 4004: PHP – Part 2 Page 9 Dr. Mark Llewellyn ©

Defining Functions In PHP
• Naming conventions for functions are the same as for normal

variables in PHP. As with variables you should apply

meaningful names and be consistent in naming and style.

Using mixed case in function names is a common convention,

thus myFunction() instead of myfunction() or

my_function(). (Note: variables names are case

sensitive in PHP, function names are not!)

• Let’s define a simple function that simply prints out the word

“Hello” in big letters.

function bigHello() {

echo “<h1> HELLO </h1>”

}

CIS 4004: PHP – Part 2 Page 10 Dr. Mark Llewellyn ©

Defining Functions In PHP

Function definition

Function call

Function result

CIS 4004: PHP – Part 2 Page 11 Dr. Mark Llewellyn ©

Defining Functions In PHP
• For the next example, let’s define a function that requires an

argument. Actually, let’s define two different functions that

each take an argument.

• The first function will take a string and print the string with a

 element appended to the string. The second function

will do the same, but append two
 elements to the end

of the string.

CIS 4004: PHP – Part 2 Page 12 Dr. Mark Llewellyn ©

Defining Functions In PHP

CIS 4004: PHP – Part 2 Page 13 Dr. Mark Llewellyn ©

Defining Functions In PHP
• For the next example, let’s define a function that requires two

arguments. We’ll basically repeat the exercise from the previous

example, but in this case rather than writing two different

functions that differ only in the number of
 elements they

append to a line of text, the new function will have a second
argument that represents the number of
 elements to be

appended. Clearly this would be more efficient, in terms of code,

than creating a different function for each number of

elements we might want to append.

• In the first version of this example, shown on the next page, I

simply repeated the same effect as in the previous version, so the

two screen shots from the browser should look identical.

• The second version of this example, shown on page 15, a different

effect is produced by the function calls.

CIS 4004: PHP – Part 2 Page 14 Dr. Mark Llewellyn ©

CIS 4004: PHP – Part 2 Page 15 Dr. Mark Llewellyn ©

Defining Functions In PHP

CIS 4004: PHP – Part 2 Page 16 Dr. Mark Llewellyn ©

Defining Functions In PHP
• As a final example of simple function definition, let’s construct

a function that returns a value.

• In the previous two examples, the string that had the

elements appended to it was simply printed out in the browser.

Sometimes, however, you will want the function to provided a

value that you can work with yourself. For example, if the

function had returned the appended string, we could have

passed that to another function to further process the amended

string before it was printed.

• Let’s construct a function that will take three integer arguments

and determine the largest of the argument values and return this

value to the caller.

CIS 4004: PHP – Part 2 Page 17 Dr. Mark Llewellyn ©

Defining Functions In PHP

CIS 4004: PHP – Part 2 Page 18 Dr. Mark Llewellyn ©

Defining Functions In PHP
• The return statement can return a value or nothing at all.

• How you arrive at a value passed by a return statement can

vary.

– The value can be hard-coded: return 4;

– It can be the result of an expression: return $a/$b;

– It can be the value returned by yet another function call:

return anotherFunction($an_argument);

CIS 4004: PHP – Part 2 Page 19 Dr. Mark Llewellyn ©

Variable Scope
• A variable that is declared within a function remains local to

that function. In other words, that variable is not available

outside of the function or within other functions.

• This is referred to as the scope of a variable.

• This also implies that variable names are not required to be

unique across functions. Therefore the same variable can be

defined in more than one function.

• The following example illustrates the scope of a variable.

Notice that both functions functionOne and

functionTwo declare variables named myInt.

CIS 4004: PHP – Part 2 Page 20 Dr. Mark Llewellyn ©

Defining Functions In PHP

CIS 4004: PHP – Part 2 Page 21 Dr. Mark Llewellyn ©

Defining Functions In PHP

Inside the functions the variable is visible

(it is in scope)

Outside the functions the variable is

not visible (it is out of scope).

CIS 4004: PHP – Part 2 Page 22 Dr. Mark Llewellyn ©

Variable Scope
• Similar to a variable defined inside a function having no scope outside

of the function, a variable declared outside of a function is not

accessible from inside the function.

• In general, if a function needs information from outside of the function

in order to accomplish its task, the information should be passed as an

argument to the function.

• Having said this however, there are times when you might want to

access an important variable without passing it in as an argument.

This is accomplished in PHP with the global statement. The

global statement allows a function to access a variable declared

outside of the function. More than one variable can be declared global

at one time by separating the variable names with commas.

• The following example illustrates this concept using a variation of the

previous example.

CIS 4004: PHP – Part 2 Page 23 Dr. Mark Llewellyn ©

Variable Scope

CIS 4004: PHP – Part 2 Page 24 Dr. Mark Llewellyn ©

Variable Scope
Inside functionOne the variable

$alpha is visible via the global

statement. Note that the function
modified the value of $alpha.

Inside functionTwo the variable $alpha is

also visible via the global statement. The third

echo statement in this function will generate the

error when it attempts to reference the variable
$beta which is not in scope.

Outside of the functions the variables are

again in scope and notice the modified
value of $alpha.

CIS 4004: PHP – Part 2 Page 25 Dr. Mark Llewellyn ©

Saving State Between Function Calls
• Local variables within functions have a short but happy life –

they come into existence when the function is called and die

when the execution of the function is finished.

• Occasionally, however, you might want to give a function a

rudimentary memory.

• For example, suppose that you’d like a function to keep track of

the number of times it has been called so that numbered headings

can be created by a script.

• You could of course accomplish this by using the global

statement and accessing a variable declared outside of the

function. The example on the next page illustrates this

technique.

CIS 4004: PHP – Part 2 Page 26 Dr. Mark Llewellyn ©

Saving State Between Function Calls

CIS 4004: PHP – Part 2 Page 27 Dr. Mark Llewellyn ©

Saving State Between Function Calls

CIS 4004: PHP – Part 2 Page 28 Dr. Mark Llewellyn ©

Saving State Between Function Calls
• The previous example illustrated providing a function some

“memory” through the use of a global variable.

• This is not a very elegant way to achieve this task. Why?

• Answer: Functions that use the global statement cannot be read

as standalone blocks of code. In reading or reusing them, you

must look out for the global variables that they manipulate.

Failing to do so will render the function useless.

• This is where the static statement comes into play in PHP.

• Declaring a variable within a function to be static, the variable

remains local to the function and the function remembers its

value from execution to execution. The next example illustrates

the static statement.

CIS 4004: PHP – Part 2 Page 29 Dr. Mark Llewellyn ©

Saving State Between Function Calls

CIS 4004: PHP – Part 2 Page 30 Dr. Mark Llewellyn ©

Saving State Between Function Calls

CIS 4004: PHP – Part 2 Page 31 Dr. Mark Llewellyn ©

Setting Default Values For Arguments
• PHP provides a nifty feature to help you construct flexible

functions. For functions that require one or more arguments, you

can specify that some arguments are optional. This makes your

functions more flexible.

• To illustrate the concept of the usefulness of setting default

argument values, let’s build a function that takes a string of text

and an integer that corresponds to the point size in which the

string is to be printed in the browser.

• This is shown on the next page.

CIS 4004: PHP – Part 2 Page 32 Dr. Mark Llewellyn ©

Setting Default Values For Arguments

CIS 4004: PHP – Part 2 Page 33 Dr. Mark Llewellyn ©

Setting Default Values For Arguments
• The nifty feature that PHP provides is to allow you to assign a value to

a function argument within the function definition’s parentheses.

• The effect of this is to make the argument value passed from the caller

optional as the argument will assume the default value if no value is

provided by the caller. The next example modifies the previous

example to make use of this feature of PHP.

WARNING

You can create as many optional arguments to a function as you wish.

However, the arrangement of the arguments becomes important. Once an

optional argument is defined in a function definition, all subsequent arguments

must also be optional. In other words, you cannot have the first argument be

optional, the second argument required, the third argument optional and so

on. The ordering must be: all required arguments followed by all optional

arguments.

CIS 4004: PHP – Part 2 Page 34 Dr. Mark Llewellyn ©

The second parameter has a default

value specified making it an optional

parameter to the function. The 2nd and

3rd calls make use of this default value.

CIS 4004: PHP – Part 2 Page 35 Dr. Mark Llewellyn ©

Passing Variable References To Functions

• When you pass arguments to functions, they are stored as copies

in parameter variables. This means that any changes made to

these variables by the function is local to the function and are not

reflected beyond it.

CIS 4004: PHP – Part 2 Page 36 Dr. Mark Llewellyn ©

Passing Variable References To Functions

• By default in PHP, variables passed to functions are passed by

value. In other words, only local copies of the variables are used

by the functions and the original values of the variables are not

accessible by the function.

• So how can you allow a function to actually modify a variable

sent to it? You must create a reference to the variable.

• The reference operator in PHP is the & (ampersand). Placing an

ampersand in front of an argument in a function definition

creates a reference to the variable and allows the function to

modify the original variable.

• The following example modifies the previous example to make

use of passing an argument by reference.

CIS 4004: PHP – Part 2 Page 37 Dr. Mark Llewellyn ©

Passing Variable References To Functions

The argument $num is passed by

reference since it is preceded with the &

operator.

